A Look at Smart Balls

Tracking how fast a ball was kicked or thrown used to be done with an external device – it could be a speed radar or a high speed camera or maybe even a very trained (and experienced) eye. However in the last 5-6 years, more and more engineers and scientists have tried to put some form of sensors inside the balls to measure linear velocity, spin velocity, spin axis. This has mostly been made possible with advanced developments in microelectromechanical sensors (MEMS), where accuracy and measurement range have increased significantly (while still keeping the small form factor). Another 2 tech contributions that helped keep the sensors (more permanently) in the balls are wireless connectivity (Bluetooth or Wifi) with the micro-controllers and wireless charging.

Smart Ball Construction

Although the electronics is key to measuring movement signals and processing, there is still the very important task of holding those components (sensors + micro-controller + wireless modules + battery) inside the ball. Let’s call all those components the core. So while designing a method to secure the core within the ball, one has to consider the weight and position of the core and how it affects the centre of mass of the ball. The method has to be robust enough since the ball will take lots of impacts as it’s kicked or thrown or bounced. The method of securing the core will also affect or determine how the ball is constructed. Here’s a look at some of the different type of “smart” balls and their construction:

Smart Basketball: 94Fifty

94Fifty

Patent image – position of sensors

The way that the 9DOF sensor is built into the 94Fifty ball is rather unique (thus the patent). According to their patent application, there is an inner cavity on the surface of the inside of the ball, which is purposed for a casing to house the electronic components (core). The casing is built with flexible material such that the walls can flex with pressure difference between the inside of the bladder and the inside of the housing. The patent application also mentions providing access for battery charging but that was probably the early version. The new version is built with bluetooth connectivity and wireless charging.

The ball is constructed according to the official size and weight which is 29.5 inches (749.3mm) and 22 ounces (623.7g). So with the extra weight added from the core, the designers made adjustments to the enclosure material so that the overall weight is close to the standard weight, and more importantly the weight distribution is compensated so it spins like a standard ball. For example, if the core is positioned at the top of the ball (see image above), and the valve is placed 180 degrees from the core, extra weight would be added around the valve until balance is achieved.

Smart Soccer ball: adidas micoach

adidas miCoach Smartball

adidas’ smart ball is designed with it’s core positioned within the ball and held there by what looks like 12 sets of supports. The core is positioned or suspended right in the centre of the ball, and the supports are meant to be rigid so that the core is always in the dead centre. There doesn’t seem to be any patent related to the method of supporting the core but there was a patent with regards to the electrical wiring within the ball. The patent basically describes how wiring is arranged along the bladder wall to interconnect two electronic devices. It also mentions that the electronic components are arranged in such as way that the ball is balanced and doesn’t affect playing properties of the ball. According to the adidas page, the core consists of only a tri-axial accelerometer. There is also wireless charging with their custom induction-charging stand. The induction coils would likely be placed along the bladder wall instead of in the core.

Smart Cricket ball

The Sportzedge group at RMIT developed an instrumented cricket ball for measuring spin rate and calculating the position and movement of the spin axis (link to the conference paper). Due to the high spin rates of wrist spinners (up to 42 rps or 15,120 deg/s), typical off the shelf gyroscope sensors can’t manage that measurement range. What this smart cricket ball has are three high speed gyros that can measure +/- 20,000 deg/s, one for each axis. This ball is not built in the typical manufacturing process. In order to house the electronics, meet weight requirements, and keep it balanced, 2 solid halves of the ball was designed and CNC machined from the material Ureol or RenShape® BM 5460 which had the right density and hardness. Eight holes within the ball allowed for additional masses to be inserted to balance the ball. According to the paper, this design is an initial prototype and it is still not robust enough to be hit by a cricket bat. But it is fully capable for measuring spin rates during fast bowling. Subsequent versions will be more sturdy and also include wireless charging.

Instrumented cricket ball  (source: Fig 1 of the research paper)

Smart Oval Ball

The same team that built the smart cricket ball also developed a smart AFL ball to assess angular flight dynamics and precision of kick execution. The same electronics (high speed gyros) that were built into the smart cricket ball was also incorporated into this smart oval ball. The main difference is, this oval ball is made with two bladders that sandwich the core electronics, keeping them right in the middle of the ball. The bladders were inflated simultaneously to ensure a more even distribution of pressure.  It was noted in their paper that the advantage of using an inflatable bladder (instead of replacing it with expanded polystyrene beads) is that it allows for realistic kicking whereas the foam beads will absorb too much energy thus dampening the performance. Other than the smart AFL ball, a recent patent search found another American style football that is built with an electronic circuit coupled to an inflatable bladder. Interestingly, the football in this patent is designed intentionally with the electronics causing imbalance, unlike the above designs where the creators made sure their balls are balanced. Even though Wilson Sporting Goods has been granted this patent, there has yet to be any news of them releasing an instrumented oval ball. This might be something to look out for?

Instrumented AFL ball (source: Fig 2 of research paper)

Screen Shot 2015-02-22 at 9.57.14 pm

American Football – Wilson Sporting Goods

Ball Movement Measurements

No smart ball is complete if there are no “smarts” involved. The acceleration and/or angular velocity that is measured do not mean much if they are not processed and analysed. So firstly, the inertia sensors would require calibration – to ensure that the measurements are linear and accurate or at least corrected based on a benchmark device. Then mathematical models would be derived to determine the parameters for analysis; parameters such as spin rate, spin axis, speed, timing, ball flight path, angles, point of kick, bounces etc.

Also, to ensure that relevant data is processed accurately, certain “markers” or references are put in place to indicate when ball movement needs to be analysed and how it should be analysed. For the smart cricket and AFL ball developed by RMIT, as they are still in the research stage, a lot of the sensor measurements, signal processing, calculations and analysis are done manually. However for the commercial products like 94Fifty and the micoach smart ball, they have developed algorithms as well as guided user interface and instructions to make sure that each throw or bounce or kick is analysed accurately. In both cases, the interfaces and algorithms come in the form of an iPhone or iPad app. Here’s a breakdown of how each ball does it:

Screen Shot 2015-02-28 at 9.29.43 pm

Basically to analyse a kick with the adidas micoach ball, the micoach app needs to be turned on and connected to the ball via bluetooth. Then after the ball is positioned stationary on the ground, the user has to select his/her kicking foot and tap on the ‘Kick it’ screen before executing the kick. One condition for getting the parameters measured is to kick the ball at least a metre off the ground and for it to travel at least 10m. No bouncing or rolling kicks. 

Screen Shot 2015-02-28 at 7.16.33 pm

Proper kicks that will be tracked

Similarly the 94Fifty ball requires its app to be turned on and connected via bluetooth for the shots to be measured. For measuring shots, the user’s height needs to be entered into the app as well as the distance where the user is shooting from. There are options in the app to utilise a shooting machine or a user can practice with a training partner who can pass the ball after each shot. The only condition is that the pass has to be a chest pass for the subsequent shot to be recognised by the app. There are also some workouts or skill trainings that allow users to practice on their own and ball handling tracking options.

Screen Shot 2015-03-01 at 10.42.39 pm

Using the 94Fifty with a shooting machine

The Coaching Element

All these sensor laden balls and their accompanying apps with smart algorithms aims to help users become better players – whether it is improved technique in kicking or shooting or training of muscle memory to perform proper mechanics over and over.

The 94Fifty app provides real-time audio feedback for each shot that a user makes, whether the focus is on shot arc angle or shot speed or shot backspin. Based on ideal stats (e.g. arc angle of 52 deg and backspin of 180rpm), the user can fine tune his/her technique to achieve the right angle/speed/backspin. This user shows how by utilising the app’s feedback and capturing his practice on video at the same time, he could analyse his shot mechanics and identify how he could correct his shooting technique.

Likewise, the adidas micoach smart ball app not only measures each kick with ball speed, spin, spin angle, ball strike location & flight path, it also provides “Coach Notes” with recommendations on how the user can boost each specific parameter. A video option within the app allows a second person to capture the user’s kick using the iPhone/iPad’s camera so that the user not only gets the kick statistics but also visual playback of the kick.

Bottom Line

Designing a smart ball that analyses a player’s performance is definitely a complicated process. Not only must the instrumented ball behave like a normal standard ball with proper balance, the electronics incorporated within the ball have to be held robustly so that they don’t break under impact and the sensor data remains repeatable and reliable. Then there is the task of working out what parameters can be determined from the sensor data, if constraints/markers/references should be put in place to ensure accurate measurements, and how those parameters are helpful for improving an athlete’s skills and techniques.

Even with a properly designed ball that measures all the critical performance parameters accurately , it’s probably still not a complete coaching system. What the ball (and app) lacks is the ability to know (and break down) what exactly the athlete did in his kick or shot to achieve the numbers as calculated by the app. For example, in football, what affects a kick include: foot speed, which part of the foot kicked the ball, and the amount of upper-body movement; and in basketball, a few things that influence a free throw include: the amount of trunk and knee flexion, shoulder flexion and elbow extension. These range of movements could be tracked with either video analysis (such as Kinovea which is markerless) or a 3D motion tracking system (such as Vicon which requires markers), or wearable sensors (such as SabelSenseXSens or this new sensor embedded compression suit).

In a nutshell, smart balls are definitely great coaching tools. But if combined with athlete movement tracking, it would give a lot more insight to improving the athlete’s shot performance.

Of Racing Suits and Aerodynamics

Wind Tunnel tests with custom designed mannequins and different Under Armour speed skating suit prototypes.

In many sports that involve high speed movements, drag or air resistance is probably one of their biggest enemy in achieving their peak performance. One winter sport that faces this challenge is speed skating, and turns out altitude plays a big part as well – the higher the skating venue is, the less air resistance there is (more about that in this article). Also the effect of drag on the skater’s speed and performance is pretty significant and the suit that the skaters wear could have an impact on the colour of the medal they get.

So just before the 2014 Sochi Winter Olympics, there was a bit of news about the revolutionary speed skating suit designed and made by Under Armour and Lockheed Martin. The “Mach 39” was supposed to be the fastest speed skating suit ever made. Unfortunately, instead of delivering medals (gold ones for that matter), the result was the US athletes performed below expectations. Now, this could be due to the suit OR if we break it down, could be due to a thousand other reasons (on top of the suit)..

There was a bit of history to the design of the suit, and the basic idea was: just as dimples on golf balls reduced aerodynamic drag, adding dimples on the suit would have the same effect. Of course, other than the dimple design, there were other considerations like textile selection and compression fitting design. Just have a look at the video below that describes what the designers and researchers looked at to reduce friction and improve aerodynamics of the suit. What’s really interesting is how they customised the mannequins to typical skating positions for wind tunnel tests. (Drag to 4:00 of the video to just see the custom mannequins)

Although the rational behind the design and testing all seems to make sense, I can’t help but have a few questions:

a. With so much movements during speed skating, is it really possible to estimate the drag based on wind tunnel experiments? I mean, there are a number of sports that do drag tests in wind tunnels; like skiing and cycling. But these sports have moments of competing when the athlete maintains a certain position for a short period; and those are the moments where having an optimum position (aerodynamically) could really reduce drag significantly. But speed skaters hardly stay in one position during competition (maybe except at the starting line). Then if that’s the case, would the wind tunnel results be fully applicable on the track?

b. Friction plays 2 roles: it slows you down and it gives you more grip/control. If there is too much friction, it impedes movement; but if there is minimal or close to no friction, the athlete might lose control. How then, do we strike a balance between them?

c. Is it possible to measure drag dynamically on the track? Well, a company called Alphamantis seems to have done that, but with cycling, and in a velodrome fitted with gate sensors. Some additional input parameters they require include the bike’s wheel circumference and also inputs from standard power meters and speed/cadence sensors. With the power meters, there is a calibration process before the actual aerotesting where they apply a model to calculate drag. For more details of the testing, you can read ths interesting blogpost by DCrainmaker.

I reckon it is possible (in theory) to develop a model for speedskating (similar to what Alphamantis did for cycling) to estimate drag on the ice skating track. The model might be slightly similar to this one in wheelchair racing: when the speedskater is pushing off (and at equilibrium), there are 4 different forces applied on the speedskater: 1) Reaction force, 2) Inertia, 3) Friction between the ice and skates, and 4) Drag force.

  1. Reaction force (or applied force) can be measured by instrumenting the skates with a shoe sole pressure sensor similar to this or this.
  2. Inertia can be determined by measuring the forward acceleration of the skater (using an inertia sensor or a suit of sensors), then multiplying that by the overall mass of the skater.
  3. Friction can be calculate based on the coefficient of friction of ice which is different for straights and curves according to this paper.
  4. Finally, since the sum of all these forces equals to zero, we can determine the drag force!

Xsens Concept Tests in Speedskating

Of course this model is very much simplified and some assumptions are made, but if more thought is put into it, this might just work.

Anyway, going back to the lacklustre results of the Under Armour Mach 39 suit, there could be so many reasons why the athletes didn’t perform during those races. Since US speedskating has extended the contract with UA, they obviously know that the suit wasn’t the main culprit. It did sound like the athletes weren’t really used to the new suit, so maybe it’s just a matter of ‘breaking-in’ the suits.

Thanks for reading and if you have any thoughts or suggestions on aerodynamics or drag tests, do leave some comments!

(Also posted in SportsTechnologyBlog.com)

Developing with Kinect sensors for fitness and health

microsoft_kinect_sensorThe Kinect sensor has been widely used (hacked/developed/applied) by many ever since the Xbox 360 was first released. A couple of years ago, a fellow sports engineer from SHU studied the feasibility of using the Kinect sensor as a biomechanical analysis tool. He concluded that although the Kinect was fairly accurate, it wasn’t good enough for serious analysis (You can read more in his blog post here). The main advantage of the Kinect was (and still is) it’s price compared to professional motion sensors, and the Microsoft SDK which allows developers to come up with interesting applications (Check out various kinect hacks here).

I recently started working on a project that utilises the Kinect sensor. The project is basically developing a fitness product/system that combines the use of various sensors for assessing gym exercises. It is a rather interesting and novel concept because not only does the product quantify different gym workouts, it has a gamification portion where each user is competing with another gym user at the same time. No, it’s not like online gaming. In fact, this system is not designed to be used at home, but rather in a gym setting where participants perform the workouts together and get scored at the end of each session. Think Nike+ Kinect Training but for many people physically at the same place and with smart gym equipment (Equipment with sensors and smart algorithms). I probably should not go into too much details to avoid spoilers, but do look out for it’s launch sometime this year!

Nike+ Kinect Assessment

Nike+ Kinect Assessment

Anyway, I had the opportunity to test out the Nike+ Kinect Training (NKT) and found that it has quite a well designed interface that helps the user perform workouts with proper techniques. For example, the Kinect (ver 1) sensor is not the most accurate in measuring depth, so for exercises like push-ups, burpees, and core exercises like the bird-dog, the NKT gets users to turn to the side instead of face the TV/Kinect sensor; that way, the user’s movements are tracked more accurately. The concept of the NKT program is also pretty good because it starts with putting the user through an assessment – a series of movement tests and exercises, then rates the user in terms of strength, flexibility and stamina. Following that, it recommends a scheduled training program with a combination of exercises that can help you reach your goal (either to build power, become toned or lean). The feedback given by the on-screen personal trainer are usually quite spot on, usually correcting my posture, asking me to slow down (for exercises that are meant to be controlled) or speed up (for endurance type exercises), or just encouraging me to push on for the last few reps. There are instances where the Kinect sensor was unable to track some of my joints accurately and failed to count my reps, especially in a few of the floor exercises. But all in all, it is a pretty good program based on some sports science fundamentals and it could be an effective training tool for people who like to workout alone. I also got some good ideas off it that might be useful in the project I am working on.

{On a separate note, there has been some interesting devices/gadgets developed for the fitness and strength training folks in the last few months:

  • PUSH – a wearable arm band (possibly built with inertia sensors) that is able to determine force, velocity and power of each strength training rep
  • Hexoskin – another wearable smart apparel that not only measures movement (activity level, steps, cadence), but also the users physiology (heart rate and breathing rate).
  • Athos – similar to the Hexoskin, it is a wearable smart apparel with the addition of electromyography (EMG) capabilities embedded in the apparel.
  • Skulpt Aim – a mobile device that measures the user’s body fat percentage and muscle quality in individual muscles.

These devices (and other smart devices) could potentially become a common sight in gyms in the near future, allowing users to track more about their workout sessions and gain more understanding of what’s happening. A common trait among these gadgets is that they all have (or are developing) iPhone apps, which means users will have access to their workout history on their fingertips and probably be able to brag about it on social media.}

Going back to the Kinect sensor, apart from sports and fitness applications, developers have also come up with practical solutions for the medical and health industry. One such application is the Teki system developed by technology services company Accenture, and a few other partners including Microsoft. The main purpose of the Teki system is to reduce the need for elderly patients to travel to the hospital for routine consultations and check-ups, saving time and money. Using a Kinect sensor, set up at the elderly patient’s home, together with a few other wireless medical devices like a pulse oximeter and a spirometer, the doctor is able to do a remote consultation using a webcam in the hospital/clinic. The Kinect sensor comes in when the doctor needs to evaluate the patient’s range of motion; or when there are prescribed rehabilitative exercises that the patient need to perform and the Kinect sensor is able to assess and provide feedback to assist the patient.

Kinect v2

Kinect v2

It was mentioned earlier that the Kinect sensor isn’t the most precise in measuring movements, especially in terms of depth and also higher speed motions. Although the specification says that it could measure up to 30 fps, but after testing it myself, I found that it is usually around 15-16 fps (depending on your program). Lighting and certain background objects could also affect the detection of a full skeleton. But all these little ‘glitches’ will no longer be there with the release of the new Kinect 2 sensor which features improved performance over the original Kinect. Those improvements include: a wide-angle time-of-flight (ToF) camera allowing better range (or depth) measurements; capturing 1080p video, and ability to ‘see’ in the dark with its new active IR sensor; it can detect more joints on the body (5 more than the previous) with much higher accuracy, and it can track up to 6 skeletons at one time. Also, it is capable of measuring the users’ heart rate via a change in the user’s skin tone and even detecting mood from the user’s facial expression. {Just watch this video that basically demos all the improvements.}

With this newer Kinect sensor, it will be a lot more exciting for hackers/developers and who knows what interesting applications could be invented. But as of now, there is still no news of when Microsoft will officially release the windows version of Kinect 2 for developers; for those who are really keen, there is a preview program with limited spots that you can apply for here!

If you know any other Kinect applications in sports and health, feel free to comment below. Thanks for reading and here’s wishing everyone a happy new year!

Designing an iPad Cooling Case

A while back, I was referred to someone who had an issue with overheating iPads (the 3rd gen one). Due to the nature of his work (coaching/sports science), he often uses the iPad under the sun, which contributes a fair amount of heat to the iPad, and it was overheating to the extent that it would shut down. The shutting down was meant to be a safety feature to prevent it from blowing up, but this became a huge inconvenience for him. So the challenge for me was to come up with a solution to cool down the iPad so that he can continue using it under the sun.

RESEARCH

Overheating iPadFirst I did a bit of research on the internet, and found that the new iPad (3rd gen) did have an issue with overheating. An article from Reuters even found that the iPad racked up temperatures of up to 47 deg Celsius after 45 minutes of running an intense action game. It didn’t bother most people (from what I read on the forums) because they will just stop using the iPad when it got too warm and let it cool down, or use it on the table instead of holding it with their hands. But for someone who needs to use the iPad as a sports training tool under the sun, it was a problem.

DESIGN RESEARCH

Next I explored the possible options for cooling the iPad:

  1. Cooling with water – People who overclock their PCs are usually the ones who would try using a water cooling system. You could build one on your own, or buy a system off the shelf. It will work for a PC, but an iPad? I am not too sure. I think one thing for sure is it will make the iPad way too bulky.
  2. Using an ice pack – Anything that is zero degrees should cool things down. But, the thing is, it will also cause condensation. There will be water droplets everywhere, your hands gets slippery and oops, you drop the iPad on the ground. Not a good idea.
  3. Heat sink – Heat sinks are only effective if there is complete contact between the hot surface and the heat sink; and typically that is achieved by applying heat sink compound or thermal paste between the surfaces. Also sticking a couple of heat sinks at the back of the iPad might make it less ergonomic to carry.
  4. Cooling fans – Now this might work. All we need is somewhere to mount the fans, allow the air to move around the back of the iPad and carry the heat off the surface.

FEASIBILITY TEST

Out of the 4 options, I picked the cooling fans since it seemed the most feasible solution. My initial plan was to build a 3D model and run a CFD simulation to test out the concept. But when I started to draft something on SolidWorks, I ended up designing an iPad case which could house two 10mm fans and with channels for directing air across the back of an iPad. Then since I had access to 3D printing,  I decided to just build the prototype, get two 10mm fans and ran an actual test with the iPad. 

1st prototype with fans

1st prototype with fans

On one of the few sunny days in autumn, I borrowed a 3rd gen iPad and subjected it to some ‘heating’. I turned on the iPad, stuck a thermocouple on it’s back and left it under the sun. It was about 30 deg C that day. Once the thermocouple reading reached 45 deg C, I inserted the iPad into the prototype case and turned on the fans, while leaving it under direct sunlight. The good news was that the temperature dropped by 5 deg only after a minute or two with the fans on. But rate of cooling slowed down after that and it dropped to 34 deg C after 20 minutes. 34 deg C is still quite warm but since this is still under direct sunlight, and it was a 30 deg C day, I would say it was quite effective.

DESIGN IMPROVEMENTS

In my opinion, the concept worked. The design just needs a bit of tweaking. Firstly, I didn’t get the dimensions of the iPad right so the case didn’t really fit that well. Secondly, I picked the wrong fans – they were a little too big and they needed a 12V supply. Thirdly, the fans had to be switched on manually – it would be better if there was a temperature controlled switch.

So I got all those sorted out:

  • Improved the case design. Even added a slot to mount a wide angle lens for the rear IMG_2388camera.
  • Found smaller fans that only required 5V power supply.
  • Also got some help with building a temperature sensor circuit that will switch on the fans when it gets too hot (it’s adjustable via a variable resistor).

NEXT PHASE?

Before I went ahead to build a second prototype, I decided to find out how much it would actually cost to 3D print it (The first prototype I got was given to me in kind). To my surprise, it would cost over $600. It would actually be a hundred dollars cheaper to have the case prototyped using CNC machining. On the other hand, all those electronic components plus the fans would only cost less than $20.

Well, if I was making a few thousand of those cases, I could just design moulds and get those parts extruded which would then bring down the cost of each iPad case. But how many people will actually need a cooling case for their iPad??

Also when I was working of this project (back in April), there was already the 4th gen iPad in the market, which was kind of an improvement. There were still complains of the iPad 4 being too warm, but I was thinking, it wouldn’t be long before Apple came up with a newer model that will totally solve the heat issue. Fast forward to today, out comes the iPad Air with a brand new processor! Apple has also stopped manufacturing the 3rd and 4th generation iPads. That’s probably because they realised they were inferior designs!

IN THE END

Although I didn’t get to mass produce these iPad cooling cases, it was overall a good experience. I realised that I would have to work faster if I wanted to make accessories for tablets or smart phones because a newer and better version is always coming out. Also the cost of commercial 3D printing services is way too high. If I wanted to get 3 prototype cases built, I will be better off buying myself a 3D printer. The cost of thermoplastics for printing doesn’t seem too expensive. Might be cheaper than traditional ink cartridges!

Anyway, thanks for reading, and if you think this iPad cooling case is a good idea and you want to get one, let me know!

Crowdsourcing Sports Innovation

Crowdsourcing Sports Innovation GameChangerMost people probably heard of crowdsourced funding platforms like Kickstarter or Indiegogo. There are of course many other similar platforms all over the world that help budding entrepreneurs or generally people with new/good ideas to fulfil their venture. I wrote a little about crowdsourced funding for sports technology a year ago and since then, there has been a LOT more innovative sports tech products that went the crowdsourced funding way. Some of them were also mentioned on this blog, like wearable activity trackers,  swimming technologies, smart sports equipment with sensors and tech that prevents sports injuries. Like I said, there are LOTS more sports technology that are on those platforms and I reckon Kickstarter or Indiegogo should just start a new category called Sports Technology. If you follow DCRainmaker, you will probably notice that he has set aside a section for athletic crowdfunded projects on his weekly reviews.

Now, it sounds like its just the sports innovators and entrepreneurs putting themselves out there, seeking random funding and investors, but things are starting to change.

The Australian Sports Technology Network recently ran a Sports Tech Investment Pitching Competition (2nd year running) that aimed to uncover new innovations in sports technology. How did it work? Basically, people were invited to make an initial submission of their product/innovation; then 8 of the submissions were selected and put through an eight minute investment pitching competition where each of them were ‘grilled’ by experts in sports business and commercialisation (think Dragons’ Den). Finally a winner and a runners up were selected based on innovation and commercial viability. On top of winning some prize money, they also receive 12 months of advice and mentoring to assist them in their new venture. If you want to see what one of the ASTN pitching is like, check out this video from the 2012 competition:

Nike is running their own innovation program starting early next year (also for a second time). Focused around the Nike+ fuel band, Nike launched the Nike Fuel Lab. So if you have an idea of a product or service that could integrate with Nike Fuel (and “help millions of people be more active”), Nike is inviting you to submit your idea by 20th Jan 2014 (no business plans required). 10 of those submitted ideas will then be selected for a 12-week program (in San Francisco) where the 10 teams will be given access to the Nike+ APIs and SDKs, and coached to further develop theirs products/services technically as well as from a business point of view. Finally at the end of the 12-weeks, a Demo Day will give the ten teams an opportunity to present their product concepts to the Nike leaders, industry leaders, angel investors and venture capitalists. To get a rough idea of how it’s like, check out the below video of their inaugural program called Nike+ Accelerator that just ended a few months back.

Under Armour (UA) is also crowdsourcing innovative ideas that leverages on their new performance monitoring device – the Armour39, which is essentially a heart rate monitor strap with connectivity to an iOS device. As far as I can see, there are no motion sensors in there but it does calculate calories burned and a metric they call WILLpower (trademarked). The format of their competition, the Armour39 challenge, is quite similar to the ASTN and Nike one. Innovators are invited to submit proposals for technologies that could expand the capabilities of the Armour39; all the proposals will be sifted down to 50, and those 50 get to develop their prototypes with the Armour39 SDK; then 15 of those prototypes get selected to do a final presentation/pitching on this Digital Future Show event next year (which is also only their 2nd one). Winner and runners up get the prize money and the opportunity to collaborate with UA. Here’s a glimpse of what the last Future Show was like and what were some of the ideas that surfaced:

I think by now we all get a gist of what’s going on here, my point is, sports companies and organisations are starting to look for innovations outside of themselves. They obviously recognise that they don’t have all the answers (even with their engineers and scientists working hard in the labs) and they probably noticed that there are many innovators/creators/makers out there with ideas but not enough resources to bring it to fruition. So they start their own crowdsourcing – Set up a stage/platform to draw innovations in, pick out the good ones (ones that can make money), invest in them and push them into market! Sure, its not a new concept and they sound like a spoof of Dragons’ Den (or other programs..) but its churning out sports innovations and I think that’s awesome!

Lastly, for those of you who have innovative ideas for technology in sports, why not give these competitions a shot. The ASTN pitching competition will probably run again next year, check out their website for details*. The Nike+ Fuel Lab has a submission deadline on 20th Jan 2014 and the deadline for the UA Armour39 challenge is 15 Nov 2013. Even if you don’t win the competition, I reckon you still gain some interesting experience. Or if you are not one who likes to “show off” in public, Under Armour also set up an online tool for people to submit their ideas, and they will work with you to develop it if they find it has potential. So what are you waiting for? Like what the 10th Doctor always says: Allons-y!

*the ASTN pitching competition is currently only open to people living in Australia.

APCST 2013 – The SportsTech gathering in HK

DSC_8152

The 6th Asia Pacific Congress on Sports Technology has come to a close last month. I think many (well, at least all 6 of you who emailed me) has agreed that it was a great conference. For some, it might be the Chinese Junkboat ride that was the highlight, where you enjoyed the beautiful view of the city, the night lights and even the full moon (credit goes to our HK organisers); for others, it could be the some of the presentations that sparked something in your minds; or for some others, simply being in Hong Kong, meeting new people in the industry and forming new collaborations might be the focal point.

The keynote talks all came from recognised experts in their own specialisations – sports aerodynamics, biomechanics & orthopaedics, sports medicine and even sports tech commercialisation. On top of the eye-opening video footage on baseball pitching, there were insights into the performance of prostheses, an interesting new invention that prevents ankle sprains, and a tell-all on how to commercialise new sports technologies.

For the parallel sessions, although I only had the chance to sit down in a couple of sessions, I still caught some really good paper presentations. One of them was by Steffen Willwacher who won the adidas Young Investigator’s Award. The committee all agreed that his paper contained novelty and innovation in engineering, which is really what the conference as well as our sponsor, adidas, hope to promote. Some of the other award contenders that were also quite novel included topics on climbing, road cycling and motocross. Seeing these and all the other papers are just evidence that there is so much more possibilities and so much more to explore in this growing field.

So where is APCST 2015 going to be? The location and exact date has not been confirmed, but it will likely be between Singapore and Abu Dhabi. Whichever the case, the organising committee’s decision on the venue will definitely be one that adds value to the conference as well as to the sports tech community. Keep a lookout for updates!

Lastly, to see some of the conference photos, check out this Google+ community page.

Till then!

Safety Technology in Sports

Safety Technology Shit Accidents happen. Nobody plans for them to happen. But they do. The thought of “what if…” can be quite frightening, especially for people with some form of anxiety disorder. So if you are going for an overseas holiday, you might take up a travel insurance; if you are a school teacher bringing kids out for an excursion, you might prepare a risk management plan before that; and if you are organising a football competition, you will want to ensure that you got first aiders or sports trainers during the game. For protection, athletes wear safety equipment such as helmets, mouth guards, body armour, braces, goggles, gloves etc to reduce the risk of injury and possibly death. But if one considers the theory of risk homeostasis, athletes may go harder or play with less caution because of the protective gear and thus negates the effect. Lately engineers/designers/innovators have resorted to using various sensor and wireless technologies to help manage or prevent serious injuries in sport. We will have a look at a couple of these technologies that have been developed.

Managing concussions

Riddell-helmet_x600

Riddell’s built-in sensors

Wearing helmets are only good for protecting against skull fractures but not brain concussions. The next best thing to do is to measure the amount of impact and deduce if that might cause a concussion. The first helmet with a comprehensive impact detection system was Riddell. The Riddell HITS technology helmet is embedded with multiple sensors that measure the magnitude and direction of impacts to a player’s head. The impact data is transmitted wirelessly to a computer at the bench where it is analysed to determine the likelihood that the player has a concussion. This helps coaches and medical staff decide whether or not to take a player out of a game or the next few games.

After Riddell, a couple other companies like Brain sentry and Shockbox came up with (cheaper and) more versatile solutions. Basically, they developed wireless sensor devices that can be mounted on your own sports helmet (whether it’s Gridiron, Hockey, Lacrosse, Snow sports etc). The Brain sentry sensor works by flashing a red light when an impact over a certain threshold is detected, and that is an indication that the player should get some medical attention – a simple and straightforward system. The Shockbox sensor sends out impact data directly to the coach’s smart phone via bluetooth and the smart phone app allows the coach to monitor all the athletes at once for dangerous hits. How do they decide what amount of ‘g’ is too much? Well research by Greenwald et al and Broglio et al showed that most concussions happen between 70-100g, so any impact above 70g => possible concussion. HelmetSensors There are a  few other head impact sensors that work on a similar concept but worn slightly differently (on/in the head). The i1 Biometrics Impact Intelligence System is a mouthguard with built-in sensors, while the Impact Indicator 2.0 is a chin strap also designed with sensors that measures high accelerations. One thing worthy to note about the i1 Biometrics mouthguard is their shock absorbing material Vistamaxx that is also customisable to every athlete’s mouth.

ImpactDetection2If you google “head concussion sensors”, you will find a few other similar products that is entering the market soon. The bottom line is, they all identify impacts that are over the “safe threshold” and athletes can be kept (safe) on the bench instead of getting a second hit which could be deadly. But to really know if an athlete had a concussion, they still need to have a CT scan or use this electromagnetic coil that is a cheap substitute.

Preventing drowning

There is a shocking number of people who die or become permanently disabled because of drowning. Even with lifeguards or in cases where children are playing in the water with adult supervision, drowning could still happen. That’s because it only takes 20 seconds for a child to drown underwater unnoticed and 1 minute for an adult. Which brings forth the need for drowning prevention technology.

Aqauatic Safety Concepts LLC patented an Electronic swimmer monitoring system that consist of wearable sensors (worn on swimmers) that measures time of submersion and a monitoring system  at the pool or lake that detects drowning risks and alerts the lifeguards on duty.

WahoooSMS_LakeFacility

The wearable sensor can be worn as a headband or attached to a swimmer’s goggles or swimming cap. The sensors send out a distress signal when submersion is past a safety limit, the signal is picked up by highly sensitive Hydrophone Receivers mounted in the lake or pool which then translates to an audio and visual alarm on land alerting lifeguards or  pool supervisors. In lakes or ponds where the water is not clear, a mobile receiver or Swimmer Locator can be used by the lifeguard to quickly find the distressed swimmer. A Control Tablet can also be used by the lifeguard to monitor status of swimmers in the facility.

But for folks who have a small home pool and don’t need such an elaborate system, there are a couple of choices for small portable systems, like the Safety Turtle and the SEAL Swim Safe. Both work on a rather similar concept: swimmer wears a wearable sensor that detects submersion and is monitored by a portable base station that runs on batteries.They both also use names of sea animals! Apart from that, they are actually quite different with two main differences:

  1. The Safety Turtle sensor is a wearable wrist band whereas the SEAL is a wearable neck band.
  2. Safety Turtle developed separate systems/devices for adults and pets; while the SEAL designed four different safety levels on the band, starting from an immersion alarm for the non-swimmer to a more complex triggering mechanism/algorithm for safeguarding elite swimmers.

DrowningDetectionTechWhen asked why the neck band design was used for the SEAL (which on first glance appears to be an awkward swimming accessory), the CEO and Co-inventor, Dr Graham Snyder said the sensor/antenna had to be in close proximity of the nose and mouth for the detection to be accurate; and tests with swimmers confirmed that having it at their neck was not as noticeable as they thought nor did it restrict swimming.

In fact, because the SEAL was designed to be used by swimmers of different abilities, one of the biggest challenge the developers had was preventing false alarms in every safety level and making sure that drowning detection is highly accurate and timely. Going forward, the team that brought out SEAL is also planning to add other features including GPS, two way communication and monitoring physiological parameters.

Even with all these terrific wireless sensor technologies developed for keeping sports safe,   the most critical component is still human intervention – coaches and medical staff to identify a possible concussion, and vigilant lifeguards and parents to note dangers and distress in swimmers. Without them those technology will just be another piece of accessory.

Thanks for reading and stay safe!